Controlled access of p53 to the nucleus regulates its proteasomal degradation by MDM2.

نویسندگان

  • James R Davis
  • Mohanad Mossalam
  • Carol S Lim
چکیده

The tumor suppressor p53 can be sent to the proteasome for degradation by placing its nucleo-cytoplasmic shuttling under ligand control. Endogenous p53 is ubiquitinated by MDM2 in the nucleus, and controlling the access of p53 to the nuclear compartment regulates its ubiquitination and proteasomal degradation. This was accomplished by the use of a protein switch that places nuclear translocation under the control of externally applied dexamethasone. Fluorescence microscopy revealed that sending protein switch p53 (PS-p53) to the nucleus produces a distinct punctate distribution in both the cytoplasm and nucleus. The nuclear role in accessing the proteasome was investigated by inhibiting classical nuclear export with leptomycin B. Trapping PS-p53 in the nucleus only allows this punctate staining in that compartment, suggesting that PS-p53 must translocate first to the nuclear compartment for cytoplasmic punctate staining to occur. The role of MDM2 binding was explored by inhibiting MDM2/p53 binding with nutlin-3. Inhibition of this interaction blocked both nuclear export and cytoplasmic and nuclear punctate staining, providing evidence that any change in localization after nuclear translocation is due to MDM2 binding. Further, blocking the proteolytic activity of the proteasome maintained the nuclear localization of the construct. Truncations of p53 were made to determine smaller constructs still capable of interacting with MDM2, and their subcellular localization and degradation potential was observed. PS-p53 and a smaller construct containing the two MDM2 binding regions of p53 (Box I + V) were indeed degraded by the proteasome as measured by loss of enhanced green fluorescent protein that was also fused to the construct. The influence of these constructs on p53 gene transactivation function was assessed and revealed that PS-p53 decreased gene transactivation, while PS-p53(Box I + V) did not significantly change baseline gene transactivation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteasome activator PA28γ regulates p53 by enhancing its MDM2-mediated degradation

Downregulation of p53 by MDM2-mediated proteasomal degradation makes cells resistant to apoptosis. The MDM2-p53 interaction is well characterized, but the mechanisms that regulate the interaction are not well understood. Here, we show that PA28gamma, a proteasome activator that inhibits apoptosis and promotes cell cycle progression through unknown mechanisms, exerts an effect as a cofactor in t...

متن کامل

Control of p53 ubiquitination and nuclear export by MDM2 and ARF.

p53 and ARF-INK4a are the two most frequently altered loci in human tumors. The activity of p53 protein is inhibited during normal cell growth by the proto-oncoprotein MDM2 through either repression of p53-mediated transcription in the nucleus or proteasomal degradation of p53 protein in the cytoplasm. Responding to oncogenic signal-activated cell hyperproliferation, ARF-mediated antagonism of ...

متن کامل

Insulin Receptor Tyrosine Kinase Substrate Enhances Low Levels of MDM2-Mediated p53 Ubiquitination

The tumor suppressor p53 controls multiple cellular functions including DNA repair, cell cycle arrest and apoptosis. MDM2-mediated p53 ubiquitination affects both degradation and cytoplasmic localization of p53. Several cofactors are known to modulate MDM2-mediated p53 ubiquitination and proteasomal degradation. Here we show that IRTKS, a novel IRSp53-like protein inhibited p53-induced apoptosi...

متن کامل

Mdm2 facilitates the association of p53 with the proteasome.

The ubiquitin ligase Mdm2 targets the p53 tumor suppressor protein for proteasomal degradation. Mutating phosphorylation sites in the central domain of Mdm2 prevents p53 degradation, although it is still ubiquitylated, indicating that Mdm2 has a post-ubiquitylation function for p53 degradation. We show that Mdm2 associates with several subunits of the 19S proteasome regulatory particle in a ubi...

متن کامل

PIG3 Regulates p53 Stability by Suppressing Its MDM2-Mediated Ubiquitination

Under normal, non-stressed conditions, intracellular p53 is continually ubiquitinated by MDM2 and targeted for degradation. However, in response to severe genotoxic stress, p53 protein levels are markedly increased and apoptotic cell death is triggered. Inhibiting the ubiquitination of p53 under conditions where DNA damage has occurred is therefore crucial for preventing the development of canc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2013